999国产精品视频_米奇777超碰欧美日韩亚洲_亚洲一区欧美_亚洲欧美一区二区精品久久久

親愛的CFA學員:歡迎來到融躍教育CFA網! 距離 2025/8/20 CFA一級考期還有 天!
全國熱線:400-963-0708 網站地圖
【CFA投資學】馬科維茨的組合理論是什么? 發布時間:2020年08月21日

魯老師

從事CFA培訓教育六年,熟悉CFA課程體系,規劃考試方案,提供CFA備考建議。

  馬柯維茨投資組合理論是美國經濟學家Markowitz(1952)發表論文《資產組合的選擇》,標志著現代投資組合理論的開端。他利用均值--方差模型分析得出通過投資組合可以有效降低風險的結論。

  同時,Roy(1952)提出了“安全首要模型”(Safety-First Portfolio Theory),將投資組合的均值和方差作為一個整體來選擇,尤其是他提出以極小化投資組合收益小于給定的“災險水平”的概率作為模型的決策準則,為后來的VaR(Value at Risk)等方法提供了思路。

  Tobin(1958)提出了著名的“二基金分離定理”:在允許賣空的證券組合選擇問題中,每一種有效證券組合都是一種無風險資產與一種特殊的風險資產的組合。

  在Markowitz等人的基礎上,Hicks(1962)的“[[組合投資的純理論]”指出,在包含現金的資產組合中,組合期望值和標準差之間有線形關系,并且風險資產的比例仍然沿著這條線形的有效邊界這部分上,這就解釋了Tobin的分離定理的內容。Wiliam.F.Sharpe(1963)提出“單一指數模型”,該模型假定資產收益只與市場總體收益有關,從而大大簡化了馬柯維茨理論中所用到的復雜計算。

  馬柯維茨的模型中以方差刻畫風險,并且收益分布對稱,許多學者對此提出了各自不同的見解。

  Mao(1970);Markowit(z1959);orter(1974);Hogan,Warren(1974);Harlow(1991)等認為下半方差更能準確刻畫風險,因此討論了均值一半方差模型。

  Konno和Suzuki(1995)研究了收益不對稱情況下的均值-方差-偏度模型,該模型在收益率分布不對稱的情況下具有價值,因為具有相同均值和方差的資產組合很可能具有不同的偏度,偏度大的資產組合獲得較大收益率的可能性也相應增加。Athayde,Flores(2002)考慮了非對稱分布條件下的資產配置情況:在前兩階奇數矩限定的情況下,分別最小化方差與峰度并將其推廣到最小化任一奇數矩陣;Jondeau,Rockinger(2002)在投資者效用函數為常數相對風險厭惡(CRRA)效用函數的假定下將期末期望收益Taylor展開取前4階高階矩,運用一階條件來最優化資產配置;Jondeau,Rockinger(2005)考慮收益率的聯合非正態分布和時變特征,包括了波動聚集性、非對稱和肥尾特征。將期末期望收益Taylor展開并取前4階高階矩,運用一階條件來最優化資產配置;Sahu等(2001,2003)提出偏正態分布來衡量高階矩的影響,能充分考慮偏度與協偏度,同時處理“肥尾”的影響;Campbell R等(2004偏正態分布估計高階矩的影響,貝葉斯方法處理收益分布的參數不確定性情況,在上述基礎之上處理最優化問題。

  Konno,Yamazaki(1991)用期望絕對偏差刻畫風險,建立了一個資產組合選擇的線性規劃模型,被稱為均值-絕對偏差模型。該模型如同均值-方差模型那樣也發展成均-下半絕對偏差模型;Young(1998)以資產組合收益的最小順序統計量作為風險度量利用極大極小規則建立了一個資產組合選擇的線性規劃模型;Cai(2000用資產組合項資產收益中的最大期望絕對偏差來刻畫風險,建立了一個資產組合選擇的線性規劃模型并給出了解析解。

微信掃一掃

還沒有找到合適的CFA課程?趕快聯系學管老師,讓老師馬上聯系您! 試聽CFA培訓課程 ,高通過省時省心!